Abstrait

Co-Occurrence Matrix and Its Statistical Features as an Approach for Identification Of Phase Transitions Of Mesogens

C.Nageswara Rao , S.Sreehari Sastry , K.Mallika , Ha Sie Tiong and K.B.Mahalakshmi

Statistical features extracted from the Gray Level Co-occurrence Matrix (GLCM) of liquid crystal textures are used to investigate the phase transition temperatures of nematic liquid crystals p – n Alkyl benzoic acids (nBA) where n = 8,9 and10. Textures of compounds are recorded as a function of temperature using Polarizing Optical Microscope attached to the hot stage and high resolution camera. In this method, second order statistical parameters – contrast, energy, homogeneity and correlation of the sample textures are computed using MATLAB software. The changes associated in the values of computed statistical features as a function of temperature is a helpful process to identify the phase transition temperatures of the samples. Results obtained from this method are compared with literature values of Differential Scanning Calorimetry (DSC) and are in agreement

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié

Indexé dans

Academic Keys
ResearchBible
CiteFactor
Cosmos IF
RefSeek
Hamdard University
World Catalogue of Scientific Journals
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

Voir plus