Abstrait

EXPERIMENTAL STUDIES OF THERMAL CONDUCTIVITY, VISCOSITY AND STABILITY OF ETHYLENE GLYCOL NANOFLUIDS

Tony John, T. S. Krishnakumar

Nanofluids are colloidal solutions of nanometer sized particles in a base fluid. They exhibit enhanced thermal conductivity and viscosity compared to the base fluid from which they are prepared. The variation of thermal conductivity and viscosity of ethylene glycol based alumina and copper oxide nanofluids with respect to particle volume concentration and temperature were investigated. The increase in thermal conductivity values were slightly greater than the prediction of Hamilton Crosser model and the effective viscosity of nanofluids were much higher than the values predicted by Einstein-Batchelor model. No consistent trend was observed for temperature dependence of relative effective viscosity of nanofluids. The stability of nanofluids increased with increase in viscosity of the base fluid and decreased with increasing particle volume concentration. These results are helpful in extending the use of nanofluids to various fields such as industrial cooling and lubrication. Keywords—cooling; nanofluids; thermal conductivity; viscosity; stability

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié

Indexé dans

Academic Keys
ResearchBible
CiteFactor
Cosmos IF
RefSeek
Hamdard University
World Catalogue of Scientific Journals
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

Voir plus