Abstrait

LIE DETECTION SYSTEM USING ARTIFICIAL NEURAL NETWORK

Nidhi Srivastava and Dr. Sipi Dubey

In this paper, we demonstrate that we can use non-invasive physiology sensing to detect stress and lying, within the context of Artificial Neural Network. We show how simply derived non-invasive physiological features such as voice pitch variation, and heart rate variability are correlated to a number of high stress situations found in real life. Using these features, we can develop simple linear models that can be used to identify stress and bluffing.

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié

Indexé dans

Google Scholar
Academic Journals Database
Open J Gate
Academic Keys
ResearchBible
CiteFactor
Electronic Journals Library
RefSeek
Hamdard University
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

Voir plus