Abstrait

Next Generation Method for Reversible Data Hiding

R.Narmatha, Mr.S.R.Sivakumar

Nowadays huge attention is paid to reversible data hiding (RDH) in encrypted images, since it maintains the excellent property that the original cover can be lossless recovered after embedded data is extracted while protecting the image content's confidentiality. Recent Methods such as reserving room before encryption with a traditional RDH algorithm sometimes results in error and complicated usage at the time of data extraction and/or image restoration .Hence to overcome this problem, this project propose an efficient method which uses by combining cryptographic primitives based encryption with Histogram Shifting-based RDH algorithm, a high capacity and low distortion can be achieved efficiently, and thus it is easy for the data hider to reversibly embed data in the encrypted image.Extracting Data from Encrypted Images to manage and update personal information of images which are encrypted for protecting clients’ privacy, an inferior database manager may only get access to the data hiding key and have to manipulate data in encrypted domain. When the database manager gets the data hiding key, he can decrypt using the same cryptographic primitives and extract the additional data by directly reading the decrypted version.. As the whole process is entirely operated on encrypted domain, it avoids the leakage of original content. The proposed method can achieve real multi level reversibility, that is, data extraction and image recovery are free of any error. Experiments show that this method can embed more than 10 times as large payloads for the same image quality.

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié

Indexé dans

Academic Keys
ResearchBible
CiteFactor
Cosmos IF
RefSeek
Hamdard University
World Catalogue of Scientific Journals
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

Voir plus