Abstrait

Effect of Different Acidifying Agents on Amendment in Buffering Capacity of Soil

Tanzeela Fazal, Bushra Ismail, Nusrat Shaheen, Ahmad Numan, Adnan and Abdur Rahman Khan

Rising population has globally challenged the food security for all livings, which ultimately need the agricultural land expansion to meet the demands. For cultivations, along with other parameters, optimal availability of most of the nutrients is found at pH less than 6. And alkaline soils covering more than one fourth of the earth's surface constrain the wide range of available land for cultivations. Amendments in pH are usually brought out by the addition of either synthetic chemicals or natural biomass but, effectiveness of any amendment is directly resisted by soil’s buffering capacity. Buffering capacity retains the pH of the soil. This study is designed to lower the soil pH as well as to maintain it efficiently, over a long period of time by using various chemicals. Chemicals tried to reduce the soil pH in this study were: aluminum sulphate (Al2(SO4)3), hydrogen peroxide (H2O2), hydrochloric acid (HCl) and sulphuric acid (H2SO4). The chemicals were employed on three different textured soils in batch, both individually and in combinations. The buffering capacity of different soils was related with soil textures to compare the effects of chemical amendments on individual soils. The soil-water (1:1) paste was kept at room temperature for five months after the application of treatment. Most of the chemical treatments not only lowered the pH significantly but retained it as well for longer period of time, indicating suitability of cultivation at desired acidic pH, ranging from 3-6.

Indexé dans

Chemical Abstracts Service (CAS)
Index Copernicus
Google Scholar
Open J Gate
Academic Keys
ResearchBible
CiteFactor
Cosmos IF
Electronic Journals Library
RefSeek
Hamdard University
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos
Secret Search Engine Labs

Voir plus