Abstrait

Methods to Enhance Electrical Conductivity of PEDOT: PSS-based Electrodes

Amrita Chakraborty, Aaron Di Filippo, Sheena Deivasigamani, Calvin Hong, Anshu Madwesh, Marius Orlowski

This paper extends our prior study on enhancing Poly (3,4-ethylenedioxythiophene) Polystyrene Sulfonate (PEDOT:PSS) electrical conductivity. We explore various methods, including acid treatments, metal nanoparticle doping (Cu and Ag), multiple PEDOT:PSS layer depositions, and mono/multiatomic layer graphene insertion. Our findings reveal that optimizing PEDOT:PSS multilayer depositions and the treatment with nitric acid surpasses the effectiveness of additional methods using metal nanoparticles and graphene. This optimized process not only enhances PEDOT:PSS electrical conductivity but also proves less error-prone, more stable, and more cost-effective than using graphene layers and metal nanoparticles. Optimization factors include spinning speed, etchant concentration, and etching time. Compared to a single-layer PEDOT:PSS of the same thickness, the optimized multilayer PEDOT:PSS treated with nitric acid shows a reduction in sheet resistance from 1 MΩ/sq to 7 Ω/sq. Additionally, we account for film aging to mitigate ambient-induced reliability effects.

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié

Indexé dans

Index Copernicus
Open J Gate
Academic Keys
ResearchBible
CiteFactor
Cosmos IF
RefSeek
Hamdard University
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos
Geneva Foundation for Medical Education and Research
Secret Search Engine Labs

Voir plus