Abstrait

Molecular Model of Inhibition of the Catalytic Fragment of Domain ExoN of Exoribonuclease of Virus SARS-CoV-2-Betacoronavirus B by Drug FS-1 Containing Molecular Iodine and Lithium and Magnesium Halides.

Gulnara Abdrashidovna Yuldasheva*, Ilya Sergeevich Korotetskiy, Kaissar Tabynov, Kairat Tabynov, Aleksandr Ivanovich Ilin

Model of inhibition of the catalytic fragment of domain ExoN of exoribonuclease of virus SARS-CoV-2-betacoronavirus B by Drug FS-1 containing molecular iodine and lithium and magnesium halides was proposed by the molecular modeling method.

For the genome of the virus taken from isolate of SARS-CoV-2/INMI1/human/2020/ITA, the frequency of occurrence of nucleotide triplets has been analysed. The most common triplet is AAA (281).

Using the DFT/B3PW91/6-31G** approach, it is shown the active complexes of drug FS-1: (MgI3LiII2)+ and Li(Cl)I3, can segregate from the dextrin helix and can form a complex with donor-active atoms of the triplet AAA of viral RNA.

Complexes of active center of nanocomplex FS-1 with triplet AAA destroy the complex formed by a phosphate group of viral RNA and a catalytic fragment of domain ExoN of exoribonuclease and form a new nucleoprotein complex where lithium chloride and (MgI3LiII2)+ bind both viral RNA and magnesium ions of the catalytic fragment of domain ExoN of exoribonuclease. The conditions of cleavage of RNA are violated.

The drug FS-1 substance has virus inhibitory activity at a concentration of 3.36 mg/ml in Vero E6 cell culture against coronavirus infection COVID-19 (strain hCoV19/Kazakhstan/KazNAU-NSCEDI-481/2020) in a dose of 100 TCID50/0.2 ml. Result of experimental research and the proposed molecular model show that the nanocomplex of drug FS-1 have anticoronavirus effect.

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié

Indexé dans

Chemical Abstracts Service (CAS)
Index Copernicus
Open J Gate
Academic Keys
ResearchBible
CiteFactor
Electronic Journals Library
RefSeek
Hamdard University
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos
Geneva Foundation for Medical Education and Research
Secret Search Engine Labs

Voir plus