Abstrait

Thermal Properties of Butylacrylate (BA) Transesterified and Benzoyl Peroxide (BPO) Cured Coir Fibers

Rout SK, Tripathy BC and Ray PK

In this work the significance of transesterification and curing on the thermal behavior of agro waste coir fibers has been reported. Thermal behaviour of six varieties of fibers i.e. (1) base coir, (2) coir fibers treated with 4% sodium hydroxide [Coir-ONa (4%)], (3) coir transesterfied with n-Butyl acrylate (BA) in presence of Pyridine and Acetone [Coir-BA (Py/ Acetone)], (4) benzoyl peroxide (BPO) cured [Coir-BA (Py/Acetone)] which is [Coir-BA (Py/Acetone)-C-BPO], (5) Coir-ONa (4%) transesterified with butylacrylate [Coir-BA (4% NaOH)] and (6) cured [Coir-BA (4% NaOH)] which is [Coir-BA (4% NaOH)-C-BPO] were studied from their TG, DTG, DTA and DSC. The activation energy involved in the pyrolysis of coirs and the order of reaction has been evaluated with the help of Freeman-Caroll model. It was found that the temperature of completion for degradation (Tf (°C)) of the modified coir was higher than the Base coir. Thermal stability of chemically modified fibers follow the order as Coir-BA (Py/Acetone)-C-BPO>Coir-BA (Py/Acetone)>Coir-BA (4% NaOH)-C-BPO>Coir-BA (4% NaOH)>Coir-ONa (4%)>Base coir. It was observed that transesterification and curing improve the thermal stability of the fibers, making them highly suitable for their applications as good reinforcement materials for designing and fabrication of novel polymeric composites, textile fibers, adsorbents, and adsorbates.

Indexé dans

Index Copernicus
Open J Gate
Academic Keys
ResearchBible
CiteFactor
Cosmos IF
RefSeek
Hamdard University
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos
Geneva Foundation for Medical Education and Research
Secret Search Engine Labs

Voir plus