Thavamani Rajapandi
Microscopy remains the gold standard for the detection of malaria parasites in blood samples, while rapid diagnostic tests (RDTs) and polymerase chain reaction (PCR)-based methods are increasingly employed for field applications, each with limitations. Using in vitro cultured Plasmodium falciparum parasite isolates, we analyzed several sample preparation methods for PCR-based detection. Test samples subjected to hypotonic lysis, followed by a near complete depletion of hemozoin (Hz) and hemoglobin (Hb) and subsequent PCR amplification of the msp2 gene resulted in a detection limit that was improved over samples prepared in isotonic buffer conditions. In addition, we amplified sequences of several target genes, including the msp2-, msp1-, 18S rRNA- and eba175 from parasite extracts prepared by hypotonic lysis. We identified a primer set which amplified a region within eba175 that gave a greater detection limit of 1 parasite per 5 × 107 red blood cells (RBCs), as well as a primer set for msp2 that gave a detection limit of 1 to 5 parasites per 5 × 107 RBCs by standard PCR analysis. The remaining targets exhibited maximum detection limits of 20 to 30 parasites per 5 × 107 RBCs. This newly developed method is 100 to 500 times more sensitive than currently available PCR-based methods which detect 30 to 100 parasites per 5 × 106 RBCs in 1 μl of blood). In addition, this method could be used in field deployable PCR-based diagnostics, as well as for parasite genotyping and quality control of failed RDTs.