Abstrait

Mesokinetics of Formation and Growth of Nanostructured Substances with Strong Bonds

Emil Edipovich Lin

In this work, we review the results of the development of phenomenological method for describing formation and growth of nanostructured objects with strong interatomic bonds. It is assumed that the growth of nanostructures is caused by their phonon excitations and vibrational interactions, leading to mutual compensation of free electronic bonds of “boundary” (i.e., surface) atoms in adjoining objects and to consolidation of these objects into more large patterns, which are compact clusters. The clusters reveal collective quantum properties, namely, excitations of quasi-particles – phonons. A proposed cluster mechanism of formation of macroscopic diamond particles from nanodiamonds made it possible to describe all data available at that instant, concerning man-made diamonds produced during both static and dynamic synthesis. A proposed model of formation of biological nanoobjects and mesoobjects gives formally calculated sizes, which correspond to characteristic dimensions of protein nanoparticles. In addition, the model provides a mesoscopic range of sizes, which is in keeping with characteristic dimensions of cells as well as of simplest organisms.

Indexé dans

Index Copernicus
Google Scholar
Academic Journals Database
Open J Gate
Genamics JournalSeek
Academic Keys
ResearchBible
The Global Impact Factor (GIF)
CiteFactor
Cosmos IF
Electronic Journals Library
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos
Geneva Foundation for Medical Education and Research
Secret Search Engine Labs

Voir plus